Hjem / Kultur & samfund / Maskinlæring afslører opfattelsen af kvinder og mænd i bøger
Bøger.
Databaseret analyse af bøger afdækker litteraturens kønsopfattelse.

Maskinlæring afslører opfattelsen af kvinder og mænd i bøger

Et nyt forskningsprojekt, hvor man gennemtrawler 3,5 millioner bøger ved hjælp af kunstig intelligens, afslører, at mænd typisk beskrives med ord, der siger noget om deres opførsel, mens kvinder bliver påhæftet adjektiver, som knytter sig til deres udseende. En gruppe dataloger fra blandt andet Københavns Universitet står bag undersøgelsen.

En datalog fra Københavns Universitet har sammen med forskerkolleger fra USA gennemtrawlet en enorm mængde bøger for at finde ud af, om der er forskel på den type ord, mænd og kvinder bliver beskrevet med i litteraturen. Forskerne har ved hjælp af en ny computermodel analyseret et datasæt bestående af hele 3,5 millioner bøger. Bøgerne er udgivet på engelsk i perioden 1900 til 2008 og er en blanding af skøn- og faglitteratur.

Resultatet er klart: Smuk og sexet. Det er to af de allermest brugte tillægsord om kvinder. Retskaffen, rationel og modig bliver til gengæld rigtig ofte brugt om mænd.

“Vi kan tydeligt se, at de ord, der bliver brugt om kvinder i langt højere grad går på deres udseende, end de ord der bruges til at beskrive mænd. Dermed har vi fået bekræftet en udbredt opfattelse, men nu på et statistisk niveau,” siger datalog og adjunkt Isabelle Augenstein fra Datalogisk Institut på Københavns Universitet.

Forskerne har udtrukket alle de tillægsord og udsagnsord, der knytter sig til kønsbestemte navneord (for eksempel “datter” og “stewardesse”). Det kan være kombinationerne “sexet stewardesse” eller “pigerne sladrer”. De har derefter analyseret, om ordene har en positiv, negativ eller neutral betydning, og hvilke kategorier ordene fordeler sig i.

Maskinlæring kan analysere milliarder af ord

Datalogernes analyser viser, at negative udsagnsord, der knytter sig til kroppen og udseendet, bruges hele fem gange så ofte om personer af hunkøn som af hankøn. Analyserne viser også, at positive og neutrale tillægsord om kroppen og udseendet forekommer cirka dobbelt så ofte i beskrivelser af personer af hunkøn, hvor personer af hankøn derimod hyppigst bliver beskrevet med tillægsord, som har at gøre med deres opførsel og egenskaber.

Tidligere har det typisk været sprogforskere, som har kigget på forekomsten af kønsbias, men ud fra mindre datamængder. Med maskinlærings-algoritmer kan dataloger i dag analysere data i kolossale mængder – i dette tilfælde 11 milliarder ord. Datasættet er baseret på Google Ngram Corpus.

Gamle kønsstereotyper får nyt liv

Selvom mange af bøgerne er udgivet for flere årtier siden, spiller de stadig en aktiv rolle, påpeger Isabelle Augenstein.

De algoritmer, som bruges til at lave maskiner og programmer, der kan forstå menneskesprog, bliver nemlig fodret med data i form af tekstmateriale, der ligger tilgængeligt på nettet. Det er også den teknologi, der bruges, når vores smartphones genkender vores stemmer, og når Google giver os forslag til søgeord.

“Det, algoritmerne gør, er at identificere mønstre, og hver gang de observerer et mønster, opfattes det som at noget er “sandt”. Og hvis nogle af disse mønstre refererer til biased sprog, bliver resultatet også biased. Systemerne adopterer så at sige det sprog, vi mennesker bruger – og dermed også kønsstereotyper og fordomme,” siger Isabelle Augenstein og giver et eksempel på, hvor det kan have betydning:

“Hvis det sprog, vi bruger om mænd og kvinder, er forskelligt i for eksempel anbefalinger af medarbejdere, får det indflydelse på, hvilke personer der tilbydes job, når firmaer bruger it-systemer til at sortere jobansøgninger.”

Forskel på genrer undersøges

I takt med at kunstig intelligens og sprogteknologi vinder mere og mere indpas i vores samfund, er det vigtigt at være bevidst om, at meget tekst er kønsbiased, fortsætter Isabelle Augenstein:

“Dernæst kan vi forsøge at tage højde for det, når vi udvikler maskinlærings-modeller ved enten at bruge mindre biased tekst eller ved at tvinge modellerne til at ignorere eller modvirke bias. Alle tre ting er mulige.”

Forskerne påpeger, at analysen har sine begrænsninger, idet den ikke tager højde for, hvem der har skrevet de enkelte passager, og hvorvidt der er forskel på graden af bias, alt efter om bøgerne er udgivet tidligt eller sent i perioden. Derudover skelner den ikke mellem genrer – for eksempel mellem kærlighedsromaner og faglitteratur. Flere af disse ting er forskerne nu i gang med at følge op på, oplyses Det Natur- og Biovidenskabelige Fakultet på Københavns Universitet.

Tilføj en kommentar

Din e-mail adresse vil ikke blive offentliggjort. Markerede felter skal udfyldes *

*

200-125   300-075   210-260   210-060   300-115   100-105   300-101   400-101   300-320   300-070   300-206   200-310   300-135   300-208   810-403   400-050   640-916   642-997   300-209   400-201   200-355   352-001